Study Finds Many With Mild Covid Have New Ailments Months Later

Most adults who test positive for the virus that causes Covid-19 don’t require hospital care, but they tend to seek medical care in the following months, and two-thirds of those who do seek care receive a diagnosis of a new health condition they did not have previously, a new study reports.The study, conducted by investigators from the Centers for Disease Control and Prevention and Kaiser Permanente, included some 3,171 members of the Kaiser Permanente Georgia integrated health care system. More than half were Black.The message for patients is that even for those who have had only mild Covid-19, “it’s possible you may experience new or persistent symptoms months after the initial diagnosis,” said Dr. Alfonso C. Hernandez-Romieu, an infectious disease specialist with the C.D.C. who was the study’s lead author. “And it’s important for people to make sure they’re going to their clinicians,” he said, to express their concerns.“It’s equally important,” he added, “for clinicians to acknowledge that there may be these long-term effects, and to really make sure they’re validating patients, treating them with empathy, and trying to help them in the best way possible.”Clinicians need to monitor patients for Covid-19-related complications that are potentially very serious, like blood clots, he said.The study did not compare patients who tested positive for the coronavirus to patients who did not test positive, so the authors were unable to say whether people who had recovered from mild Covid-19 disease made more doctors’ visits than those who never had the virus.But two-thirds of the patients who had mild disease sought medical care a month to six months after their Covid-19 diagnoses, and about two-thirds of those who sought care were found to have an entirely new condition. The new diagnoses included cough, shortness of breath, heart rate abnormalities, chest or throat pain, and fatigue, “which likely represent ongoing Covid-19 symptoms,” the study said.Among those more likely to seek medical care were adults 50 and older, women and those with underlying health conditions. Black adults were also slightly more likely than others to seek care. But over all, the authors noted, the number of visits declined over time.The potential for long-term complications, even after a mild course of disease, underscores the need for prevention measures and vaccination, Dr. Hernandez-Romieu said.“There is a lot we don’t know about post-Covid conditions,” he said. “Even though a majority of people don’t end up with severe Covid, or end up in the hospital, the potential for long-term health effects is really important.”

Read more →

Are You Struggling With Feelings of Guilt?

Tell us how the pandemic has contributed to the guilt that you are experiencing. You may be contacted by a reporter for inclusion in an upcoming article.Have you been feeling guilty lately?For many people, this powerful emotion has become especially prevalent during the pandemic. There is guilt over surviving Covid-19 when family members or friends did not; guilt over potentially exposing other people to the virus; guilt about the distance we have had to maintain from those we care about most.The struggle to balance child care and work has been one of the most guilt-inducing aspects of the pandemic for some people. Meanwhile, others feel bad that they actually had a pretty great year. The list goes on.We want to learn more about the different kinds of guilt people are facing right now and how you are dealing with those feelings. Please use the form below to share your thoughts. A reporter may contact you about featuring your story in an article.What is causing you to have feelings of guilt and how are you coping?

Read more →

A new study hints at a reason the J.&J. and AstraZeneca vaccines may cause blood clots in rare cases.

As a panel of experts advising the Centers for Disease Control and Prevention discusses a handful of rare blood clots that health officials have investigated in Johnson & Johnson coronavirus vaccine recipients, a central mystery looms: How might a vaccine that has been given to nearly eight million people cause the side effect in just a few of them?There’s no clear answer yet, but Dr. Andreas Greinacher, a researcher at University Medicine Greifswald in Germany is leading one effort to find out. At a news conference on Tuesday, he said that he had reached an agreement with Johnson & Johnson to inspect the components of the vaccine to see if it can disrupt the normal blood clotting process under certain rare conditions.“We just agreed that we would like to work together,” he said.It’s possible, Dr. Greinacher said, that the Johnson & Johnson vaccine can cause rare side effects by the same process that he suspects is responsible for similar side effects from the AstraZeneca vaccine. The main ingredient in both vaccines are harmless viruses known as adenoviruses, which slip into human cells and deliver a coronavirus gene that will later trigger an immune response.On Tuesday, Dr. Greinacher and his colleagues released a report on how the AstraZeneca vaccines may trigger the side effect. The study has not yet been published in a scientific journal.The scientists found that components in the AstraZeneca vaccine can stick to a protein that platelets release during the formation of blood clots. These clumps of molecules could be seen by the body as foreign invaders, the scientists speculated, triggering a cascade of reactions that cause platelets to turn into dangerous clots.Dr. Paul A. Offit, a vaccine expert at Children’s Hospital of Philadelphia who was not involved in the study, found Dr. Greinacher’s study intriguing but far from the final word. “He throws out a lot of possibilities,” he said.Dr. Offit said it was not clear which of the many factors the researchers studied might explain the rare blood clots in people vaccinated with AstraZeneca’s doses. “It’s like sipping from a fire hose,” he said.At a news conference on Tuesday, Dr. Greinacher said that the research might point to ways, in the AstraZeneca vaccine, of lowering the risk of the clots or of treating the side effects. But he emphasized that the small risk of those side effects was strongly outweighed by the protection that vaccines such as AstraZeneca provide against Covid-19.“Not being vaccinated is far more dangerous than being vaccinated and at risk for this adverse drug reaction,” he said.

Read more →

Force transmission between cells orchestrates collective cellular motion

How do the billions of cells communicate in order to perform tasks? The cells exert force on their environment through movement — and in doing so, they communicate. They work as a group in order to infiltrate their environment, perform wound healing and the like. They sense the stiffness or softness of their surroundings and this helps them connect and organize their collective effort. But when the connection between cells is distrubeddisturbed, a situation just like when cancer is initiated, can appear.
Assistant Professor Amin Doostmohammadi at the Niels Bohr Institute, University of Copenhagen has investigated the mechanics of cell movement and connection in an interdisciplinary project, collaborating with biophysicists in France, Australia, and Singapore, using both computer modelling and biological experiments. The result is now published in Nature Materials.
Amin Doostmohammadi explains: “We need to understand how cells translate this “knowledge from sensing” at the individual cell level and transform it into action on the collective level. This is still kind of a black box in biology — how do cell talk to their neighbors and act as a collective?”
The force of surrounding tissue dictates cell behavior
Individual cells have a contractile mode of motion: they pull on the surface they are located on to move themselves forward. However, cells lining up cavities and surfaces in our body, like the tubes of blood vessels or the cells at the surface of organs, are able to generate extensile forces. They do the opposite, they stretch instead of contract — and they form strong connections with their neighbors. Contractile cells are able to switch to becoming extensile cells, when coming into contact with their neighbors. If, for instance, when contractile cells sense a void or an empty space, like when a wound appears, they can loosen their cell — cell connection, become more individual, and when healing the wound, they form strong connections with their neighbors again, becoming extensile, closing the gap, so to speak.
Weakening cell connection can be the hallmark of cancer initiation
The cells connect to their neighbors by adherens junctions. They connect their internal cytoskeleton to one another and become able to transmit forces through the strong contacts. “So we asked ourselves what would happen if we prohibited the cells from making this strong connection — and it turned out that extensile, strongly connected cells turned into contractile cells with weaker connections. This is significant, because the loss of this contact is the hallmark of cancer initiation. The cells losing contact start behaving more as individuals and become able to infiltrate their surroundings. This process also happens when an embryo develops, but the key difference here is that when the healthy cells have achieved their goal, like forming an organ, they go back to their original form. Cancer cells do not. They are on a one way street,” Amin Doostmohammadi says.
The basic action and reaction of cells are determined by surroundings and communication
How cells “decide” when to go from one form to another is a complicated mix of reacting to their environment, changes in the chemical composition of it, the mechanical stiffness or softness of the tissue — and many proteins in the cells are involved in the process. The key finding of this study is that this reaction to surroundings is constantly shifting: There is a constant cross-talk between cell — surroundings and cell — cell, and this is what determines the actions and reactions of the cells.
Are treatments for cancer within the scope of this new understanding in cell mechanics?
“We must always be careful, when talking about a serious and very complex disease like cancer,” Amin Doostmohammadi says. “But what we can say is that this study brings us one step closer to understanding the basic mechanics of cell behavior, when the cells go from the normal behavior to the aggressive, cancer type cell behavior. So, one of the big questions this study raises is if we might be able to target the mechanics of the cells by some form of therapy or treatment, instead of targeting the DNA or chemical composition of the cells themselves? Could we target the environment instead of the cells? This is basic research, connecting physics and biology, into the mechanics of cell behavior, based on their sensing and responding to the surroundings and coordinating their effort — our improved understanding of this may well lead to new therapies, and there are trials going on at the moment at a preliminary stage.”

Read more →

Research shows pain relieving effects of CBD

It’s been hailed as a wonder drug and it’s certainly creating wonder profits. By some estimates, the Cannabidiol (or CBD) market could be worth $20 billion dollars by 2024.
While users tout its effectiveness in pain relief, up until now there’s been limited experimental human research on the actual effectiveness of the drug. However, a new study led by University researchers sheds light on the ability of CBD to reduce pain along with the impact that the so-called placebo effect may have on pain outcomes.
“For science and the public at large the question remained, is the pain relief that CBD users claim to experience due to pharmacological effects or placebo effects,” says Martin De Vita, a researcher in the psychology department in the College of Arts and Sciences. “That’s a fair question because we know that simply telling someone that a substance has the ability to relieve their pain can actually cause robust changes in their pain sensitivity. These are called expectancy effects.”
De Vita, along with Stephen Maisto, research professor and professor emeritus of psychology, were uniquely prepared to answer that exact question. The pair, along with fellow lab member and doctoral candidate Dezarie Moskal, previously conducted the first systematic review and meta-analysis of experimental research examining the effects cannabinoid drugs on pain.
As the first experimental pain trial to examine CBD, their study yielded consistent and noteworthy results. Among other findings, the data showed that CBD and expectancies for receiving CBD do not appear to reduce experimental pain intensity, but do make the pain feel less unpleasant.
De Vita and Maisto used sophisticated equipment that safely induces experimental heat pain, allowing them to measure how the recipient’s nervous system reacts and responds to it. “Then we administer a drug, like pure CBD, or a placebo and then re-assess their pain responses and see how they change based on which substance was administered,” says De Vita.

Read more →

Newly discovered immune cell function vital to healing

Cardiovascular disease, the most common cause of death, is the result of oxygen deprivation as blood perfusion to affected tissue is prevented. To halt the development of the disease and to promote healing, re-establishment of blood flow is crucial. Researchers at Uppsala University have now discovered that one of the most common immune cells in the human body, macrophages, play an important role in re-establishing and controlling blood flow, something that can be used to develop new drugs.
The classic function of immune cells is to defend the body against attacks from microorganisms and tumour cells. Macrophages are immune cells specialised in killing and consuming microorganisms but they have also been shown to be involved in wound healing and building blood vessels.
A new study published by researchers at Uppsala University demonstrates that macrophages accumulate around blood vessels in damaged tissue in mice, but also in humans after a myocardial infarction or peripheral ischemia. In mice, these macrophages could be seen to regulate blood flow, performing a necessary damage-control function. In healthy tissue, this task is carried out by blood vessel cells.
This discovery led the research group to investigate whether their findings could be developed into a new treatment to increase blood flow to damaged leg muscles, thus stimulating healing and improving function. By increasing the local concentration of certain signal substances that bind to macrophages in the damaged muscle, the research group was able to demonstrate that more macrophages accumulated around the blood vessels, improving their ability to regulate blood flow. This in turn resulted in improved healing and that the mice were able use the injured leg to a far greater extent.
“This is an entirely new function for the cells in our immune system and might mean that in future we can use immunotherapies to treat not only cancer but also cardiovascular diseases,” says Mia Phillipson, leader of the research group behind the discovery.
Story Source:
Materials provided by Uppsala University. Original written by Linda Koffmar. Note: Content may be edited for style and length.

Read more →

Muscle gene linked to type 2 diabetes

People with type 2 diabetes tend to have poorer muscle function than others. Now a research team at Lund University in Sweden has discovered that in type 2 diabetes, a specific gene is of great importance for the ability of muscle stem cells to create new mature muscle cells. The findings are published in Nature Communications.
“In people with type 2 diabetes, the VPS39 gene is significantly less active in the muscle cells than it is in other people, and the stem cells with less activity of the gene do not form new muscle cells to the same degree. The gene is important when muscle cells absorb sugar from blood and build new muscle. Our study is the first ever to link this gene to type 2 diabetes,” says Charlotte Ling, professor of epigenetics at Lund University who led the study.
In type 2 diabetes, the ability to produce insulin is impaired, and patients have chronically elevated blood sugar. Muscles are generally worse at absorbing sugar from food, and muscle function and strength are impaired in patients with type 2 diabetes.
A muscle consists of a mixture of fiber types with different properties. Throughout life, muscle tissue has the ability to form new muscle fibers. There are also immature muscle stem cells that are activated in connection with, for example, injury or exercise. In the current study, the researchers wanted to investigate whether epigenetic patterns in muscle stem cells can provide answers to why impaired muscle function occurs in type 2 diabetes.
Two groups were included in the study: 14 participants with type 2 diabetes and 14 healthy people in a control group. The participants in the groups were matched by age, gender and BMI (body mass index). The researchers studied epigenetic changes in the muscle stem cells in both groups, and under exactly the same conditions, they also extracted mature muscle cells and compared them. In total, they identified 20 genes , including VPS39, whose gene expression differed between the groups in both immature muscle stem cells and mature muscle cells. The researchers also compared the epigenetic patterns of muscle cells before and after cell differentiation in both groups.
“Despite the fact that both groups’ muscle stem cells were grown under identical conditions, we saw more than twice as many epigenetic changes in the type 2 diabetes group during the differentiation from muscle stem cell to mature muscle cells. Muscle-specific genes were not regulated normally, and epigenetics did not function in the same way in cells from people with type 2 diabetes,” says Charlotte Ling.
“The study clearly showed that muscle stem cells that lack the function of the gene VPS39, which is lower in type 2 diabetes, also lack the ability to form new mature muscle cells. This is because muscle stem cells that lack VPS39 due to altered epigenetic mechanisms cannot change their metabolism in the same way as muscle stem cells from controls — the cells therefore remain immature or break down and die,” says Johanna Säll Sernevi, postdoc researcher at Lund University.
To confirm the findings, the researchers also used animal models with mice that had a reduced amount of the VPS39 gene, to mimic the disease. The mice subsequently had altered gene expression and reduced uptake of sugar from blood into the muscle tissue, just like the individuals with type 2 diabetes.
The comprehensive study is a collaboration between Swedish, Danish and German researchers, who believe that the findings open up new avenues for treating type 2 diabetes.
“The genome, our DNA, cannot be changed, although epigenetics in effect does. With this new knowledge, it is possible to change the dysfunctional epigenetics that occur in type 2 diabetes. For example, by regulating proteins, stimulating or increasing the amount of the VPS39 gene, it would be possible to affect the muscles’ ability to regenerate and absorb sugar,” concludes Charlotte Ling.
Story Source:
Materials provided by Lund University. Note: Content may be edited for style and length.

Read more →

Fight or flight response may hinge on protein in skeletal muscular system

Researchers at the University of Cincinnati say a regulatory protein found in skeletal muscle fiber may play an important role in the body’s fight or flight response when encountering stressful situations.
The protein, fast skeletal myosin binding protein-C (fMyBP-C), plays a foundational role in the proper regulation of contractile structure and function in the body’s fast twitch muscles — these muscles produce sudden bursts of power to sprint into action, jump or lift heavy objects. Fast skeletal myosin binding protein-C modulates the speed and force of fast skeletal muscle contraction.
“This response is very critical for the higher animal and human survival. Just imagine, you are walking through a forest and suddenly you see a tiger in front of you,” says Sakthivel Sadayappan, PhD, a professor in the UC Division of Cardiovascular Health and Disease. “You will immediately act, either to fight or run away from the animal. For that action, fast muscle is essential, and fast myosin binding protein-C is the key molecule to regulate the speed of action.”
Myosin-binding protein-C is a thick filament regulatory protein found in striated muscle in both the heart and skeletal system. The protein performs different functions in the two organs, regulating contractility in the heart and playing a role in the development of fast and slow muscle fibers in skeletal muscle tissue.
Sadayappan along with researchers at UC College of Medicine, Florida State University, the University of Massachusetts Medical School and the Illinois Institute of Technology published research in the scholarly journal PNAS to further the understanding of the protein in skeletal function and regulation.
The study’s lead author is Taejeong Song, PhD, a postdoctoral fellow in the Sadayappan Lab at the UC College of Medicine.
Song says that research examined the role of the protein in fast-twitch muscles by generating a knockout mouse — an animal in which researchers have either inactivated, replaced or disrupted the existing fast myosin binding protein-C gene to study its impact.
“We found that knockout mice demonstrated a reduced ability to exercise, showed less maximal muscle force and a diminished ability for muscle to recover from injury,” explains Sadayappan. “Our study concludes that fast myosin binding protein-C is essential in regulating the force generation and speed of contraction of fast muscles.”
Song says advancing the knowledge of fast myosin binding protein-C may someday assist in addressing skeletal muscular disorders.
“Individuals lose their ability of muscle force generation for various reasons,” says Song. “They may be extremely inactive or hospitalized for long periods of time. Aging may also be the cause for some. We also think if we can manipulate the workings of fast myosin binding protein-C in skeletal muscle that we can prevent or at least slow down the loss of muscle function in genetic muscle disease such as distal arthrogryposis. Our research is trying to figure out this problem in human health.”
Story Source:
Materials provided by University of Cincinnati. Original written by Cedric Ricks. Note: Content may be edited for style and length.

Read more →

Skeletal defects may be ameliorated after immobility in the womb

Researchers from Trinity College Dublin have discovered that some skeletal defects associated with a lack of movement in the womb during early development may still be ameliorated after such periods of immobility if movement resumes.
The researchers’ discovery was made using chicken embryos, which develop similarly to their human equivalents and which can be easily viewed as development takes place — raising hopes that the finding may also apply to humans and thus have important implications for therapeutic interventions.
The research has just been published in leading international journal, Disease Models and Mechanisms.
Why babies need to move in the womb
Fetal movement in the uterus is a normal part of a healthy pregnancy and previous research by the group has shown that key molecular interactions that guide the cells and tissues of the embryo to build a functionally robust yet malleable skeleton are stimulated by movement.
If an embryo doesn’t move, a vital signal may be lost or an inappropriate one delivered in error, which can lead to the development of brittle bones or abnormal joints. As such, reduced or absent movement can lead to problems with development of bones and joints including joint dysplasia and temporary brittle bone disease in infants.

Read more →

Ankle exoskeleton enables faster walking

Being unable to walk quickly can be frustrating and problematic, but it is a common issue, especially as people age. Noting the pervasiveness of slower-than-desired walking, engineers at Stanford University have tested how well a prototype exoskeleton system they have developed — which attaches around the shin and into a running shoe — increased the self-selected walking speed of people in an experimental setting.
The exoskeleton is externally powered by motors and controlled by an algorithm. When the researchers optimized it for speed, participants walked, on average, 42 percent faster than when they were wearing normal shoes and no exoskeleton. The results of this study were published April 20 in IEEE Transactions on Neural Systems and Rehabilitation Engineering.
“We were hoping that we could increase walking speed with exoskeleton assistance, but we were really surprised to find such a large improvement,” said Steve Collins, associate professor of mechanical engineering at Stanford and senior author of the paper. “Forty percent is huge.”
For this initial set of experiments, the participants were young, healthy adults. Given their impressive results, the researchers plan to run future tests with older adults and to look at other ways the exoskeleton design can be improved. They also hope to eventually create an exoskeleton that can work outside the lab, though that goal is still a ways off.
“My research mission is to understand the science of biomechanics and motor control behind human locomotion and apply that to enhance the physical performance of humans in daily life,” said Seungmoon Song, a postdoctoral fellow in mechanical engineering and lead author of the paper. “I think exoskeletons are very promising tools that could achieve that enhancement in physical quality of life.”
Walking in the loop
The ankle exoskeleton system tested in this research is an experimental emulator that serves as a testbed for trying out different designs. It has a frame that fastens around the upper shin and into an integrated running shoe that the participant wears. It is attached to large motors that sit beside the walking surface and pull a tether that runs up the length of the back of the exoskeleton. Controlled by an algorithm, the tether tugs the wearer’s heel upward, helping them point their toe down as they push off the ground.

Read more →