Thanking NIH’s Call Center and Contact Investigation Teams

With the leader of NIH’s Occupational Medical Service, Dr. Heike Bailin, at my side, I recently met with the NIH Call Center and Contact Investigation teams to express my gratitude for the vital role they play in keeping our community safe from COVID-19. This screenshot of our virtual meeting on August 11 shows some of the more than 100 people that make up these important teams. At the same event, I also thanked the Positive Results and Return to Work teams for providing compassionate, knowledgeable guidance to NIH staff facing uncertainty and stress at home and at work. Credit: NIH

Post Link

Thanking NIH’s Call Center and Contact Investigation Teams

NIH Blog Post Date

Wednesday, August 18, 2021

Read more →

More Genetic Clues to COVID-19 Susceptibility and Severity

Many factors influence our risk of illness from SARS-CoV-2, the coronavirus responsible for COVID-19. That includes being careful to limit our possible exposures to the virus, as well as whether we have acquired immunity from a vaccine or an earlier infection. But once a person is infected, a host of other biological factors, including age and pre-existing medical conditions, will influence one’s risk of becoming severely ill.

While earlier studies have tied COVID-19 severity to genetic variations in a person’s antiviral defenses and blood type, we still have a lot to learn about how a person’s genetic makeup influences COVID-19 susceptibility and severity. So, I was pleased to see the recent findings of an impressive global effort to map the genetic underpinnings of SARS-CoV-2 infection and COVID-19 severity, which involved analyzing the genomes of many thousands of people with COVID-19 around the globe.

This comprehensive search led to the identification of 13 regions of the human genome that appear to play a role in COVID-19 infection or severity. Though more research is needed to sort out these leads, they represent potentially high-quality clues to the pathways that this virus uses to cause illness, and help to explain why some people are more likely to become infected with SARS-CoV-2 or to develop severe disease.

The international effort, known as The COVID-19 Host Genetics Initiative, is led by Andrea Ganna, Institute for Molecular Medicine Finland, Helsinki, and colleagues in the United States and around the world. Teasing out those important genetic influences is no easy task. It requires vast amounts of data, so Ganna reached out to the scientific community via Twitter to announce a new COVID-19 gene-hunting effort and ask for help. Thousands of researchers around the world answered his call. The new study, published in the journal Nature, includes data collected through the initiative as of January 2021, and represents nearly 50,000 COVID-19 patients and another 2 million uninfected controls [1].

In search of common gene variants that may influence who becomes infected with SARS-CoV-2 and how sick they will become, Ganna’s international team turned to genome-wide association studies (GWAS). As part of this, the team analyzed patient genome data for millions of so-called single-nucleotide polymorphisms, or SNPs. While these single “letter” nucleotide substitutions found all across the genome are generally of no health significance, they can point the way to the locations of gene variants that turn up more often in association with particular traits or conditions—in this case, COVID-19 susceptibility or severity. To find them, the researchers compared SNPs in people with COVID-19 to those in about 2 million healthy blood donors from the same population groups. They also looked for variants that turned up significantly more often in people who became severely ill.

Their analyses uncovered a number of gene variants associated with SARS-CoV-2 infection or severe COVID-19 in 13 regions of the human genome, six of which were new. Four of the 13 affect a person’s risk for becoming infected with SARS-CoV-2. The other nine influence a person’s risk for developing severe illness following the infection.

Interestingly, some of these gene variants already were known to have associations with other types of lung or autoimmune diseases. The new findings also help to confirm previous studies suggesting that the gene that determines a person’s blood type may influence a person’s susceptibility to SARS-CoV-2 infection, along with other genes that play a role in immunity. For example, the findings show overlap with variants within a gene called TYK2, which was earlier shown to protect against autoimmune-related diseases. Some of the variants also point to the need for further work to study previously unexplored biological processes that may play potentially important roles in COVID-19.

Two of the new variants associated with disease severity were discovered only by including individuals with East Asian ancestry, highlighting the value of diversity in such analyses to gain a more comprehensive understanding of the biology. One of these newfound variants is close to a gene known as FOXP4, which is especially intriguing because this gene is known to play a role in the airways of the lung.

The researchers continue to look for more underlying clues into the biology of COVID-19. In fact, their latest unpublished analysis has increased the number of COVID-19 patients from about 50,000 to 125,000, making it possible to add another 10 gene variants to the list.

Reference:

[1] Mapping the human genetic architecture of COVID-19. COVID-19 Host Genetics Initiative. Nature. 2021 Jul 8.

Links:

COVID-19 Research (NIH)

The COVID-19 Host Genetics Initiative

Read more →

mRNA Vaccines May Pack More Persistent Punch Against COVID-19 Than Thought

Many people, including me, have experienced a sense of gratitude and relief after receiving the new COVID-19 mRNA vaccines. But all of us are also wondering how long the vaccines will remain protective against SARS-CoV-2, the coronavirus responsible for COVID-19.

Earlier this year, clinical trials of the Moderna and Pfizer-BioNTech vaccines indicated that both immunizations appeared to protect for at least six months. Now, a study in the journal Nature provides some hopeful news that these mRNA vaccines may be protective even longer [1].

In the new study, researchers monitored key immune cells in the lymph nodes of a group of people who received both doses of the Pfizer-BioNTech mRNA vaccine. The work consistently found hallmarks of a strong, persistent immune response against SARS-CoV-2 that could be protective for years to come.

Though more research is needed, the findings add evidence that people who received mRNA COVID-19 vaccines may not need an additional “booster” shot for quite some time, unless SARS-CoV-2 evolves into new forms, or variants, that can evade this vaccine-induced immunity. That’s why it remains so critical that more Americans get vaccinated not only to protect themselves and their loved ones, but to help stop the virus’s spread in their communities and thereby reduce its ability to mutate.

The new study was conducted by an NIH-supported research team led by Jackson Turner, Jane O’Halloran, Rachel Presti, and Ali Ellebedy at Washington University School of Medicine, St. Louis. That work builds upon the group’s previous findings that people who survived COVID-19 had immune cells residing in their bone marrow for at least eight months after the infection that could recognize SARS-CoV-2 [2]. The researchers wanted to see if similar, persistent immunity existed in people who hadn’t come down with COVID-19 but who were immunized with an mRNA vaccine.

To find out, Ellebedy and team recruited 14 healthy adults who were scheduled to receive both doses of the Pfizer-BioNTech vaccine. Three weeks after their first dose of vaccine, the volunteers underwent a lymph node biopsy, primarily from nodes in the armpit. Similar biopsies were repeated at four, five, seven, and 15 weeks after the first vaccine dose.

The lymph nodes are where the human immune system establishes so-called germinal centers, which function as “training camps” that teach immature immune cells to recognize new disease threats and attack them with acquired efficiency. In this case, the “threat” is the spike protein of SARS-COV-2 encoded by the vaccine.

By the 15-week mark, all of the participants sampled continued to have active germinal centers in their lymph nodes. These centers produced an army of cells trained to remember the spike protein, along with other types of cells, including antibody-producing plasmablasts, that were locked and loaded to neutralize this key protein. In fact, Ellebedy noted that even after the study ended at 15 weeks, he and his team continued to find no signs of germinal center activity slowing down in the lymph nodes of the vaccinated volunteers.

Ellebedy said the immune response observed in his team’s study appears so robust and persistent that he thinks that it could last for years. The researcher based his assessment on the fact that germinal center reactions that persist for several months or longer usually indicate an extremely vigorous immune response that culminates in the production of large numbers of long-lasting immune cells, called memory B cells. Some memory B cells can survive for years or even decades, which gives them the capacity to respond multiple times to the same infectious agent.

This study raises some really important issues for which we still don’t have complete answers: What is the most reliable correlate of immunity from COVID-19 vaccines? Are circulating spike protein antibodies (the easiest to measure) the best indicator? Do we need to know what’s happening in the lymph nodes? What about the T cells that are responsible for cell-mediated immunity?

If you follow the news, you may have seen a bit of a dust-up in the last week on this topic. Pfizer announced the need for a booster shot has become more apparent, based on serum antibodies. Meanwhile, the Food and Drug Administration and Centers for Disease Control and Prevention said such a conclusion would be premature, since vaccine protection looks really good right now, including for the delta variant that has all of us concerned.

We’ve still got a lot more to learn about the immunity generated by the mRNA vaccines. But this study—one of the first in humans to provide direct evidence of germinal center activity after mRNA vaccination—is a good place to continue the discussion.

References:

[1] SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Turner JS, O’Halloran JA, Kalaidina E, Kim W, Schmitz AJ, Zhou JQ, Lei T, Thapa M, Chen RE, Case JB, Amanat F, Rauseo AM, Haile A, Xie X, Klebert MK, Suessen T, Middleton WD, Shi PY, Krammer F, Teefey SA, Diamond MS, Presti RM, Ellebedy AH. Nature. 2021 Jun 28. [Online ahead of print][2] SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, Hansen L, Haile A, Klebert MK, Pusic I, O’Halloran JA, Presti RM, Ellebedy AH. Nature. 2021 May 24. [Online ahead of print]Links:

COVID-19 Research (NIH)

Ellebedy Lab (Washington University, St. Louis)

NIH Support: National Institute of Allergy and Infectious Diseases; National Center for Advancing Translational Sciences

Read more →

New Metric Identifies Coronavirus Hotspots in Real Time

During the pandemic, it’s been critical to track in real time where the coronavirus is spreading at home and abroad. But it’s often hard for public health officials to know whether changes in the reported number of COVID-19 cases over time truly reflect the spread of the virus or whether they are confounded by changes in testing levels or lags in the reporting of results.

Now, NIH-funded researchers have discovered a clever workaround to detect more accurately where COVID-19 hotspots are emerging. As published in the journal Science, the new approach focuses on the actual amount of virus present in a positive COVID diagnostic test [1], not just whether the test is positive or negative. What’s even better is these data on a person’s “viral load” are readily available from polymerase chain reaction, or PCR, tests that are the “gold standard” for detecting SARS-CoV-2, the virus responsible for COVID-19. In fact, if you’ve been tested for COVID-19, there’s a good chance you’ve had a PCR-based test.

Here’s how a PCR test for COVID-19 works. After a person provides a nasal swab or saliva sample, any genetic material in the sample is extracted and prepared for the PCR machine. It uses special nucleic acid primers that, if any genetic material from SARS-CoV-2 is present, will make millions more copies of them and result in a positive test result. PCR is an enzymatic reaction that works by running many cycles of heating and cooling; each cycle results in doubling of the genetic material present in the original sample.

But it turns out that PCR can go beyond a simple “yes” or “no” test result. It’s also possible to get some sense of how much coronavirus is present in a positive sample based on the number of cycles required to make enough copies of its genetic material to get the “yes” result. This measure is known as the “cycle threshold,” or Ct, value.

When a sample is run with lots of virus in it, the PCR machine doesn’t need to make so many cycles to reach detectable levels—and the Ct value is considered low. But, when the virus is barely present in a sample, the machine needs to run more cycles before it will reach the threshold for detection. In this case, the Ct value is high. This makes the Ct metric a bit counterintuitive: low Ct means a high level of infection, and high Ct means a low level of infection.

In the new study, researchers in Michael Mina’s lab, Harvard T. H. Chan School of Public Health, Boston, including James Hay and Lee Kennedy-Shaffer, wanted to use Ct values to understand better the overall trajectory of the spread of SARS-CoV-2. Their idea was a little out of the box, since Ct values weren’t being factored into a diagnostic testing process that was set up to give people a yes-or-no answer about COVID-19 status. In fact, Ct values were often discarded.

The team members had a hunch that the amount of virus in patient samples would vary based on whether an outbreak is increasing or declining. Their reasoning was that during an outbreak, when SARS-CoV-2 is spreading rapidly through a community, a larger proportion of infected individuals will have recently contracted the virus than when it is spreading more slowly. The researchers also knew that the virus reaches its peak level in humans soon after infection (generally a couple of days before symptoms begin), and then falls to very low but still detectable levels over the course of weeks or sometimes even months. So, when viral load within samples is highest—and Ct values are lowest—it suggests an outbreak of SARS-CoV-2 is underway. As an outbreak slows and cases fall, viral loads should fall and Ct values rise.

The researchers found that just 30 positive PCR test results on a single day were enough to give an accurate real-time estimate of the growth rate of SARS-CoV-2 infections based on Ct values. With Ct values from multiple time points, it was possible to reconstruct the epidemic curve and estimate the true number of people infected. They found that even Ct values collected from a single location at a single point in time could provide extremely valuable information about the growth or decline of an outbreak.

The findings suggest that these data can now be captured and put to good use as a key metric for decision-making and gauging the success of the pandemic response going forward. It’s also important to note that the value of these data are not unique to COVID-19 and the ongoing pandemic. It appears this can be extremely useful new way to monitor the course of other viral outbreaks, now and in the future, in a way that’s less susceptible to the vagaries of testing. The hope is that this will mean even greater success in capturing viral outbreaks and mobilizing resources in real time to the places where they are most needed.

Reference:

[1] Estimating epidemiologic dynamics from cross-sectional viral load distributions. Hay JA, Kennedy-Shaffer L, Kanjilal S, Lennon NJ, Gabriel SB, Lipsitch M, Mina MJ. Science. 2021 Jun 3.

Links:

COVID-19 Research (NIH)

Michael Mina (Harvard T. H. Chan School of Public Health, Boston)

NIH Support: Common Fund, National Institute of General Medical Sciences; National Cancer Institute

Read more →

How Immunity Generated from COVID-19 Vaccines Differs from an Infection

A key issue as we move closer to ending the pandemic is determining more precisely how long people exposed to SARS-CoV-2, the COVID-19 virus, will make neutralizing antibodies against this dangerous coronavirus. Finding the answer is also potentially complicated with new SARS-CoV-2 “variants of concern” appearing around the world that could find ways to evade acquired immunity, increasing the chances of new outbreaks.

Now, a new NIH-supported study shows that the answer to this question will vary based on how an individual’s antibodies against SARS-CoV-2 were generated: over the course of a naturally acquired infection or from a COVID-19 vaccine. The new evidence shows that protective antibodies generated in response to an mRNA vaccine will target a broader range of SARS-CoV-2 variants carrying “single letter” changes in a key portion of their spike protein compared to antibodies acquired from an infection.

These results add to evidence that people with acquired immunity may have differing levels of protection to emerging SARS-CoV-2 variants. More importantly, the data provide further documentation that those who’ve had and recovered from a COVID-19 infection still stand to benefit from getting vaccinated.

These latest findings come from Jesse Bloom, Allison Greaney, and their team at Fred Hutchinson Cancer Research Center, Seattle. In an earlier study, this same team focused on the receptor binding domain (RBD), a key region of the spike protein that studs SARS-CoV-2’s outer surface. This RBD is especially important because the virus uses this part of its spike protein to anchor to another protein called ACE2 on human cells before infecting them. That makes RBD a prime target for both naturally acquired antibodies and those generated by vaccines. Using a method called deep mutational scanning, the Seattle group’s previous study mapped out all possible mutations in the RBD that would change the ability of the virus to bind ACE2 and/or for RBD-directed antibodies to strike their targets.

In their new study, published in the journal Science Translational Medicine, Bloom, Greaney, and colleagues looked again to the thousands of possible RBD variants to understand how antibodies might be expected to hit their targets there [1]. This time, they wanted to explore any differences between RBD-directed antibodies based on how they were acquired.

Again, they turned to deep mutational scanning. First, they created libraries of all 3,800 possible RBD single amino acid mutants and exposed the libraries to samples taken from vaccinated individuals and unvaccinated individuals who’d been previously infected. All vaccinated individuals had received two doses of the Moderna mRNA vaccine. This vaccine works by prompting a person’s cells to produce the spike protein, thereby launching an immune response and the production of antibodies.

By closely examining the results, the researchers uncovered important differences between acquired immunity in people who’d been vaccinated and unvaccinated people who’d been previously infected with SARS-CoV-2. Specifically, antibodies elicited by the mRNA vaccine were more focused to the RBD compared to antibodies elicited by an infection, which more often targeted other portions of the spike protein. Importantly, the vaccine-elicited antibodies targeted a broader range of places on the RBD than those elicited by natural infection.

These findings suggest that natural immunity and vaccine-generated immunity to SARS-CoV-2 will differ in how they recognize new viral variants. What’s more, antibodies acquired with the help of a vaccine may be more likely to target new SARS-CoV-2 variants potently, even when the variants carry new mutations in the RBD.

It’s not entirely clear why these differences in vaccine- and infection-elicited antibody responses exist. In both cases, RBD-directed antibodies are acquired from the immune system’s recognition and response to viral spike proteins. The Seattle team suggests these differences may arise because the vaccine presents the viral protein in slightly different conformations.

Also, it’s possible that mRNA delivery may change the way antigens are presented to the immune system, leading to differences in the antibodies that get produced. A third difference is that natural infection only exposes the body to the virus in the respiratory tract (unless the illness is very severe), while the vaccine is delivered to muscle, where the immune system may have an even better chance of seeing it and responding vigorously.

Whatever the underlying reasons turn out to be, it’s important to consider that humans are routinely infected and re-infected with other common coronaviruses, which are responsible for the common cold. It’s not at all unusual to catch a cold from seasonal coronaviruses year after year. That’s at least in part because those viruses tend to evolve to escape acquired immunity, much as SARS-CoV-2 is now in the process of doing.

The good news so far is that, unlike the situation for the common cold, we have now developed multiple COVID-19 vaccines. The evidence continues to suggest that acquired immunity from vaccines still offers substantial protection against the new variants now circulating around the globe.

The hope is that acquired immunity from the vaccines will indeed produce long-lasting protection against SARS-CoV-2 and bring an end to the pandemic. These new findings point encouragingly in that direction. They also serve as an important reminder to roll up your sleeve for the vaccine if you haven’t already done so, whether or not you’ve had COVID-19. Our best hope of winning this contest with the virus is to get as many people immunized now as possible. That will save lives, and reduce the likelihood of even more variants appearing that might evade protection from the current vaccines.

Reference:

[1] Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection. Greaney AJ, Loes AN, Gentles LE, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD. Sci Transl Med. 2021 Jun 8.

Links:

COVID-19 Research (NIH)

Bloom Lab (Fred Hutchinson Cancer Research Center, Seattle)

NIH Support: National Institute of Allergy and Infectious Diseases

Read more →

Meet an Inspiring Researcher Who Helped Create COVID-19 mRNA Vaccines

More than 170 million Americans already have received COVID-19 vaccines. As this number continues to grow and expand to younger age groups, I’m filled with overwhelming gratitude for all of the researchers who worked so diligently, over the course of decades, to build the scientific foundation for these life-saving vaccines. One of them is Dr. Kizzmekia Corbett, who played a central role in the fact that, in the span of less than a year, we were able to develop safe and effective mRNA-based vaccines to protect against this devastating infectious disease.

As leader of the immunopathogenesis team at NIH’s Dale and Betty Bumpers Vaccine Research Center in Bethesda, MD, Dr. Corbett was ready, willing, and able when the COVID-19 pandemic emerged to take the critical first steps in developing what would become the Moderna and Pfizer/BioNTech mRNA vaccines. Recently, she accepted a position at Harvard University T.H. Chan School of Public Health, Boston, where she will soon open her own viral immunology lab to help inform future vaccine development for coronaviruses and other respiratory viruses.

While she was preparing for her move to Harvard, I had a chance to speak with Dr. Corbett about her COVID-19 research experience and what it was like to get immunized with the vaccine that she helped to create. Our conversation was part of an NIH Facebook Live event in which we connected virtually from our homes in Maryland. Here is a condensed version of our chat.

Collins: You’ve studied SARS, MERS, and other coronaviruses for many years. Then, in early January 2020, like all of us, you heard that something was going on that sounded worrisome in Wuhan, China. What did you think?

Corbett: Well, the story actually began for me on December 31, 2019. My boss Dr. Barney Graham sent me an email at 6 a.m. that said: “Get ready for 2020.” There had been some news of a respiratory virus outbreak in the Wuhan district of China. I honestly wrote it off as probably a strain of the flu. Then, we got back to NIH after the holidays, and it was determined around January 6 that the virus was for certain a coronavirus. That meant our team would be responding to it.

We sat down and planned to monitor the situation very closely. We knew exactly what to do, based on our past work. We would go into full force to make a vaccine—the one now known as “the Moderna vaccine” —as quickly as possible for testing in a clinical trial. The goal was to make the vaccine in 100 days. And so when the genetic sequence of this new virus came out on January 10, I sprung out of bed and so did everyone on the team. It’s been kind of a whirlwind ever since.

Collins: Tell us a little bit more about that. The sequence got posted on the internet by a Chinese scientist. So you have this sequence, and everyone gathers in NIH’s Vaccine Research Center. Then what happens?

Corbett: The cool thing about this type of technology is you don’t even need the lab to design the vaccine. All you need are the letters, or sequence, that encodes the virus’ genetic material displayed on your computer screen. We could actually do the work from our homes, obviously in close conversation with each other.

This sequence is the virus’s genetic code. Just like humans have families—brothers, sisters, cousins—viruses also have families. So, we could see when looking at the sequence of letters, how similar this particular virus was to viruses that we’ve worked with before in the coronavirus family. It was almost like “A-ha! This is the part of the sequence that represents the protein on the surface of the virus.”

We knew that we could take the sequence of that surface protein and use all of the knowledge that we had from previous years to design a vaccine. And that’s what we did. We took that sequence on our computer screen and said we said this is exactly how we want this vaccine to look. The process was as straightforward as that.

Collins: In other words, you already knew that these coronaviruses have spike proteins on their surface and that’s the thing that’s going to be really useful for making an antibody. You’d already taken this approach in developing a vaccine for MERS, right?

Corbett: Exactly, we’d done that for MERS. Vaccines are basically a way to teach your body how to see a pathogen. Over the years, as vaccinology and technology have progressed, different scientists have figured out that you don’t really need the whole virus as a part of the vaccine. You can just take a small portion of that virus to alert your body.

In this case, taking the spike protein and teaching your immune system how to specifically spot and attack it, you can now protect yourself from COVID-19. So, we used the sequence of that spike protein, with some modifications to make it much better as a vaccine. We then deliver that to you as a message—messenger RNA (mRNA) —to get your muscle cells briefly to make the spike protein. Then, your body sees that spike protein hanging out on your cells and makes a really specific immune response to it. That way the next time your body sees the spike protein, if you ever come into contact with the virus, your immune system is armed and ready to attack.

Collins: Say more about this messenger RNA approach. It’s been so revolutionary and one of the reasons that we got vaccines into people’s arms in just 11 months. Had this approach ever been used before?

Corbett: Yes, messenger RNA technologies have been in development from a basic science perspective for over 15 years. A lot of that work was funded by NIH. Soon after I got to NIH, I attended a meeting in London called Transforming Vaccinology. At the time, Moderna was a smaller company that was working to make messenger RNA technologies, mostly centered around cancer therapies. But they had started to test some flu vaccines that used messenger RNA. My question to the presenter was: “Every single time I see you guys present, it looks like mRNA technology has always worked. Can you tell me a time that it hasn’t?” And he said, “I can’t.”

So, our understanding of how this technology works to make really good vaccines predates this pandemic. I think one of the worries that many people have is how fast and how new this technology is. But all science is compounded knowledge—everything builds on itself.

Collins: Right! We only learned about messenger RNA, because back in the 1950s and 1960s, some researchers decided to figure out how the information in our genetic instruction book, our DNA, can ultimately turn into proteins. It turned out that the message that carries that information is made of RNA.

So, you knew which kinds of letters to program into the messenger RNA vaccine. Would you explain how this vaccine, its messenger RNA, produces a spike protein. Where does that step happen?

Corbett: Your cells are machines built for this kind of thing. I like to remind people that, on a day-in, day-out basis, our cells make proteins—all of the hormones and other things our bodies needs to survive. So, we’re not teaching the cells to do anything different than they would normally do. That’s important to understand.

The way that cells do this is by reading the mRNA sequence. As they’re reading that sequence, they chew it up, like eating it, and say, “Okay, this sequence is for this very specific protein.” Then, they make that protein and push it to the surface of your cells. That’s how it happens.

Collins: And for mRNA vaccines, that’s the point when your immune system says “Wait a minute! I don’t recognize that as part of me, so I’ve got to make an antibody to it.” Then you’re off to the races and develop your immunity. Now that this mRNA vaccine strategy has succeeded for COVID-19, could it be applied to other infectious diseases or even non-infectious conditions?

Corbett: Yes, I heard that about 60 new companies have sprouted up in the last year around messenger RNA technology. They have ideas for different types of infectious disease vaccines and cancer therapies. I expect that this technology will be transformative to medicine in general.

Collins: Here’s a question from social media: “Why does it take two shots for the Pfizer and the Moderna mRNA vaccines? Why isn’t one good enough?”

Corbett: The way that these vaccines work is much like an alarm clock. Imagine your immune system is in bed and the first shot is the alarm clock going off to say, “Hey, wake up and get ready.” And just like I did this morning, the immune system pressed snooze and took a little nap. But when you hear the alarm clock the second time, it’s like someone rushing into your room and pouring a cold bucket of water on you. You have no choice but to get out of bed.

That’s what the second dose of the vaccine does. It pushes your immune response to the next level. That’s why you need two shots to get the type of efficacy that you want and be fully protected for the optimal immune response.

Collins: You were a co-leader of the team that created what became the Moderna vaccine—and you ended up getting immunized with the Moderna vaccine. What did that feel like?

Corbett: It was pretty surreal. I cried. At the end of it, I felt a lot of relief after getting my vaccine, particularly after getting the second dose. There was this breath of fresh air. It was also a birthday present. I got my second dose the day before my 35th birthday, as a birthday present to myself.

Collins: I have to admit, I cried a little bit too after my second dose. It’s just the sense of relief and incredible gratitude that we’ve reached this point. Here we are with vaccines that have 95 percent effectiveness and an incredibly good safety record, which is almost better than we could have hoped for. I’m a person of faith, so there were a lot of my prayers that went into this and it sure felt like they got answered.

Corbett: Yes, same.

Collins: You are out there a lot talking to people about the vaccines. There are still about 100 million Americans that have not yet received their first dose. Many of them still unsure about getting vaccinated. What do you say to those who are on the fence?

Corbett: In this past year, I’ve spent a lot of time talking about the vaccine with people in the community. One thing that I realized, is that I don’t need to say anything unless I’m asked. I think it’s important that I listen first, instead of just speaking.

So I do that, and I try to answer people’s inquiries as specifically as possible. But people have some very broad questions. One thing that is happening is people are seeing vaccines being developed right before their eyes. That can be a little confusing. I try to explain the process, how we went from the preclinical stage all the way to the point of getting the vaccine to hundreds of millions of people. I explain how each step along the way is very highly vetted by regulatory agencies and data safety monitoring committees. I also tell them that the monitoring continues. People from the clinical trials are still being evaluated, and there’s monitoring in the real world as the vaccine is being rolled out. I think that all of those things are really important for people to know.

Collins: Another question from social media: “As a successful scientist, what advice would you give to people who are thinking about a career in science?”

Corbett: If you think you’re interested, you just have to start. There are internship programs, there are scholarship programs, there are shadowing programs all over this country and even globally that can help you get your feet wet. I think the first thing that you want to do with any career is to figure out whether or not you like it. The only way that you can do that is to just explore, explore, explore.

Collins: Didn’t you kind of roll up your sleeves and take the plunge at a young age?

Corbett: Yes, at age 16, I went off and did summer internships at the University of North Carolina. I was able to see first-hand the day-to-day life of science and what being a scientist would look like. That was really important for me. That’s what I mean by exploring.

Collins: And a follow-up question: “Is the biomedical research community welcoming to women of color?”

Corbett: Not always, frankly. I was very fortunate to have been under the wings of a lot of mentors and advocates, who have helped to advance my career to where it is now. I had great mentors at NIH. My graduate school mentor was amazing, and my main collaborator in the coronavirus field was on my dissertation committee. Even prior to this pandemic, when I was doing work that was very obscure, he checked on me very often and made sure that he had a sense of where I wanted to go and how he could help me get there, including collaborating with me.

That kind of thing is very important, particularly for women of color or anyone from a marginalized community. That’s because there will be a point where there might be a glass ceiling. Unfortunately, we don’t necessarily have the tools to break those just yet. So, someone else is going to have to break those down, and most often than not, that person is going to have to be a white man. Finding those people who are allies with you and joining in your fight for your career trajectory is very helpful.

I remember when I was choosing a college, it was a very difficult decision for me. I got accepted into Ivy League schools, and I’d gone to all of the scholarship weekends all over the country. When I was making the decision, my dad said, “Kizzy, just always go where there is love.”

That really sticks to me with every single choice that I make around my career. You want to be at a place that’s welcoming, a place that understands you, and a place that fosters the next version of who you are destined to be. You need to make sure to step back outside of the day-to-day stuff and say, “Okay, does this place love me and people like me?” It’s important to remember that’s how you thrive: when you are comfortable in and in love with your environment.

Collins: Yes, we have to move our scientific workforce into a place where it is not necessary for a white man to advocate for a talented Black woman. There’s something very wrong with that particular circumstance. As NIH Director, I want to assure you, we are motivated more than ever to change that, including through a new initiative called UNITE. We’re missing out on welcoming the talents of so many folks who currently don’t see our research agenda as theirs, and we need to change that.

Kizzmekia, this has been a lot of fun. Thank you for giving us a half-hour of your time when you’re in the midst of this crazy two-week period of moving from Bethesda to Boston. We wish you the very best for this next chapter, which I know is going to be just amazing.

Corbett: Thank you so much.

Links:

Video: COVID-19 mRNA Vaccine Q & A – Kizzmekia Corbett and Francis Collins (NIH)Video: Lead COVID-19 scientist Kizzmekia Corbett to join Harvard Chan School faculty (Harvard University, Boston)COVID-19 Research (NIH)Dale and Betty Bumpers Vaccine Research Center (National Institute of Allergy and Infectious Diseases/NIH)UNITE Initiative (NIH)

Read more →

Could a Nasal Spray of Designer Antibodies Help to Beat COVID-19?

There are now several monoclonal antibodies, identical copies of a therapeutic antibody produced in large numbers, that are authorized for the treatment of COVID-19. But in the ongoing effort to beat this terrible pandemic, there’s plenty of room for continued improvements in treating infections with SARS-CoV-2, the virus that causes COVID-19.

With this in mind, I’m pleased to share progress in the development of a specially engineered therapeutic antibody that could be delivered through a nasal spray. Preclinical studies also suggest it may work even better than existing antibody treatments to fight COVID-19, especially now that new SARS-CoV-2 “variants of concern” have become increasingly prevalent.

These findings come from Zhiqiang An, The University of Texas Health Science Center at Houston, and Pei-Yong Shi, The University of Texas Medical Branch at Galveston, and their colleagues. The NIH-supported team recognized that the monoclonal antibodies currently in use all require time-consuming, intravenous infusion at high doses, which has limited their use. Furthermore, because they are delivered through the bloodstream, they aren’t able to reach directly the primary sites of viral infection in the nasal passages and lungs. With the emergence of new SARS-CoV-2 variants, there’s also growing evidence that some of those therapeutic antibodies are becoming less effective in targeting the virus.

Antibodies come in different types. Immunoglobulin G (IgG) antibodies, for example, are most prevalent in the blood and have the potential to confer sustained immunity. Immunoglobulin A (IgA) antibodies are found in tears, mucus, and other bodily secretions where they protect the body’s moist, inner linings, or mucosal surfaces, of the respiratory and gastrointestinal tracts. Immunoglobulin M (IgM) antibodies are also important for protecting mucosal surfaces and are produced first when fighting an infection.

Though IgA and IgM antibodies differ structurally, both can be administered in an inhaled mist. However, monoclonal antibodies now used to treat COVID-19 are of the IgG type, which must be IV infused.

In the new study, the researchers stitched IgG fragments known for their ability to target SARS-CoV-2 together with those rapidly responding IgM antibodies. They found that this engineered IgM antibody, which they call IgM-14, is more than 230 times better than the IgG antibody that they started with in neutralizing SARS-CoV-2.

Importantly, IgM-14 also does a good job of neutralizing SARS-CoV-2 variants of concern. These include the B.1.1.7 “U.K.” variant (now also called Alpha), the P.1 “Brazilian” variant (called Gamma), and the B.1.351 “South African” variant (called Beta). It also works against 21 other variants carrying alterations in the receptor binding domain (RBD) of the virus’ all-important spike protein. This protein, which allows SARS-CoV-2 to infect human cells, is a prime target for antibodies. Many of these alterations are expected to make the virus more resistant to monoclonal IgG antibodies that are now authorized by the FDA for emergency use.

But would it work to protect against coronavirus infection in a living animal? To find out, the researchers tried it in mice. They squirted a single dose of the IgM-14 antibody into the noses of mice either six hours before exposure to SARS-CoV-2 or six hours after infection with either the P.1 or B.1.351 variants.

In all cases, the antibody delivered in this way worked two days later to reduce dramatically the amount of SARS-CoV-2 in the lungs. That’s important because the amount of virus in the respiratory tracts of infected people is closely linked to severe illness and death due to COVID-19. If the new therapeutic antibody is proven safe and effective in people, it suggests it could become an important tool for reducing the severity of COVID-19, or perhaps even preventing infection altogether.

The researchers already have licensed this new antibody to a biotechnology partner called IGM Biosciences, Mountain View, CA, for further development and future testing in a clinical trial. If all goes well, the hope is that we’ll have a safe and effective nasal spray to serve as an extra line of defense in the fight against COVID-19.

Reference:

[1] Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Ku Z, Xie X, Hinton PR, Liu X, Ye X, Muruato AE, Ng DC, Biswas S, Zou J, Liu Y, Pandya D, Menachery VD, Rahman S, Cao YA, Deng H, Xiong W, Carlin KB, Liu J, Su H, Haanes EJ, Keyt BA, Zhang N, Carroll SF, Shi PY, An Z. Nature. 2021 Jun 3.

Links:

COVID-19 Research (NIH)

Zhiqiang An (The University of Texas Health Science Center at Houston)

Pei-Yong Shi (The University of Texas Medical Branch at Galveston)

IGM Biosciences (Mountain View, CA)

NIH Support: National Institute of Allergy and Infectious Diseases; National Center for Advancing Translational Sciences; National Cancer Institute

Read more →

U.S. Surgeon General on Emotional Well-Being and Fighting the Opioid Epidemic

From September 2019 to September 2020, the Centers for Disease Control and Prevention reported nearly 90,000 overdose deaths in the United States. These latest data on the nation’s opioid crisis offer another stark reminder that help is desperately needed in communities across the land. NIH’s research efforts to address the opioid crisis have been stressed during the pandemic, but creative investigators have come up with workarounds like wider use of telemedicine to fill the gap.

Much of NIH’s work on the opioid crisis is supported by the Helping to End Addiction Long-term (HEAL) Initiative. Recently, the more-than 500 investigators supported by HEAL came together virtually for their second annual meeting to discuss the initiative’s latest research progress and challenges.

As part of the meeting, I had a conversation with Dr. Vivek Murthy, the U.S. Surgeon General. Dr. Murthy served as the 19th U.S. Surgeon General under the Obama Administration and was recently confirmed as the 21st Surgeon General under the Biden Administration. In his first term as America’s Doctor, in which I had the privilege of working with him, Dr. Murthy created initiatives to tackle our country’s most urgent public health issues, including addiction and the opioid crisis. He also issued the nation’s first Surgeon General’s Report on addiction, presenting the latest scientific data and issuing a call to action to recognize addiction as a chronic illness—and not a moral failing.

In 2016, Dr. Murthy sent a letter to 2.3 million healthcare professionals urging them to join a movement to tackle the opioid epidemic. This was the first time in the history of the office that a Surgeon General had issued a letter calling the medical profession to action on this issue. In 2017, Dr. Murthy focused his attention on chronic stress and isolation as prevalent problems with profound implications for health, productivity, and happiness.

Our conversation during the HEAL meeting took place via videoconference, with the Surgeon General connecting from Washington, D.C., and me linking in from my home in Maryland. Here’s a condensed transcript of our chat:

Collins: Welcome, Dr. Murthy. We’ve known each other for a few years, and I know that you’ve talked extensively about the national epidemic of loneliness. What have you learned about loneliness and how it affects our emotional wellbeing?

Murthy: Thanks, Francis. Loneliness and perceived social isolation are profound challenges for communities struggling with addiction, including opioid use disorders. I had no real background in these issues when I started as Surgeon General in 2014. I was educated by people I met all across the country, who in their own way would tell me their stories of isolation and loneliness. It’s a common stressor, especially for those who struggle with opioid use disorders. Stress can be a trigger for relapse. It’s also connected with overdose attempts and overdose deaths.

But loneliness is bigger than addiction. It is not just a bad feeling. Loneliness increases our risk of anxiety and depression, dementia, cardiac disease, and a host of other conditions. However you cut it, addressing social isolation and loneliness is an important public-health issue if we care about addiction, if we care about mental health—if we care about the physical wellbeing of people in our country.

Collins: Vivek, you made the diagnosis of an epidemic of American loneliness back before COVID-19 came along. With the emergence of COVID-19 a little more than a year ago, it caused us to isolate ourselves even more. Now that you’re back as Surgeon General and seeing the consequences of the worst pandemic in 103 years, is loneliness even worse now than before the pandemic?

Murthy: I think there are many people for whom that sense of isolation and loneliness has increased during the pandemic. But the pandemic has been a very heterogenous experience. There are some people who have found themselves more surrounded by their extended family or a close set of friends. That has been, in many ways, a luxury. For many people who are on the frontlines as essential workers, whose jobs don’t permit them to just pick up and leave and visit extended family, these have been very stressful and isolating times.

So, I am worried. And I’m particularly worried about young people—adolescents and young adults. They already had high rates of depression, anxiety, and suicide before the pandemic, and they’re now struggling with loneliness. I mention this because young people are so hyperconnected by technology, they seem to be on TikTok and Instagram all the time. They seem to be chatting with their friends constantly, texting all the time. How could they feel isolated or lonely?

But one of the things that has become increasingly clear is what matters when it comes to loneliness is the quality of your human connections, not the quantity. For many young people that I spoke to while traveling across the country, they would say that, yes, we’re connected to people all the time. But we don’t necessarily feel like we can always be ourselves in our social media environment. That’s where comparison culture is at its height. That’s where we feel like our lives are always falling short, whether it’s not having a fancy enough job, not having as many friends, or not having the right clothing or other accessories.

We talk a lot about resilience in our country. But how do we develop more resilient people? One of the keys is to recognize that social connections are an important source of resilience. They are our natural buffers for stress. When hard things happen in our lives, so many of us just instinctively will pick up the phone to call a friend. Or we’ll get into the car and go visit a member of our family or church. The truth is, if we want to build a society that’s healthier mentally and physically, that is more resilient, and that is also more happy and fulfilled, we have to think about how we build a society that is more centered around human connection and around relationships.

My hope is that one of the things we will reevaluate is building a people-centered society. That means designing workplaces that allow people to prioritize relationships. It means designing schools that equip our children with social and emotional learning tools to build healthy relationships from the earliest ages. It means thinking about public policy, not from just the standpoint of financial impact but in terms of how it impacts communities and how it can fracture communities.

We have an opportunity to do that now, but it won’t happen by default. We have to think through this very proactively, and it starts with our own lives. What does it mean for each of us to live a truly people-centered life? What decisions would we make differently about work, about how we spend time, about where we put our attention and energy?

Collins: Those are profound and very personal words that I think we can all relate to. Let me ask you about another vulnerable population that we care deeply about. There are 50 million Americans who are living with chronic pain, invisible to many, especially during the pandemic, for whom being even more isolated has been particularly rough—and who are perhaps in a circumstance where getting access to medical care has been challenging. As Surgeon General, are you also looking closely at the folks with chronic pain?

Murthy: You’re right, the populations that were more vulnerable pre-pandemic have really struggled during this pandemic—whether that’s getting medications for treatment, needed counseling services, or taking part in social support groups, which are an essential part of the overall treatment approach and staying in recovery. It’s a reminder of how urgent it is for us, number one, to improve access to healthcare in our country. We’ve made huge strides in this area, but millions are still out of reach of the healthcare system.

A potential silver lining of this pandemic is telemedicine, which has extraordinary potential to improve and extend access to services for people living with substance use disorders. In 2016, I remember visiting a small Alaskan fishing village that you can only get to by boat or plane. In that tiny village of 150 people, I walked into the small cabin where they had first-aid supplies and provided some basic medical care. There I saw a small monitor mounted on the wall and a chair. They told me that the monitor is where people, if they’re dealing with a substance use disorder, come and sit to get counseling services from people in the lower 48 states. I was so struck by that. To know that telemedicine could reach this remote Alaskan village was really extraordinary.

I think the pandemic has accelerated our adoption of telemedicine by perhaps five years or more. But we must sustain this momentum not only with investment in broadband infrastructure, but with other things that seem mundane, like the reimbursement structure around telemedicine. I talk to clinicians now who say they are seeing some private insurers go back on reimbursement for telemedicine because the pandemic is starting to get better. But the lesson learned is not that telemedicine should go away; it’s that we should be integrating it even more deeply into the practice of medicine.

The future of care, I believe, is bringing care closer to where people are, integrating it into their workflow, bringing it to their homes and their neighborhoods. I saw this so clearly for many of the patients I cared for who fell into that category of being in vulnerable populations. They were working two, three jobs, trying to take care of their children at the same time. Having a conversation with them about how they could find time to go to the gym was almost a laughable matter because they were literally dealing with issues of survival and putting food on the table for their kids. As a society we have to do more to understand the lives of people who fall into those categories and provide services that bring what they need to them, as opposed to expecting them to come to us.

If we continue in a purely fee-for-service-based environment where people must go multiple places to get their care, we will not ultimately get care to the vulnerable populations that have struggled the most and that are hoping that we will do better this time around. I think we can. I think we must. And I think COVID may just be, in part, the impetus to move forward in a different way that we need.

Collins: Let’s talk a minute about the specifics of the opioid crisis. If we’re going to move this crisis in the right direction, are there particular areas that you would say we really need more rigorous data in order to convince the medical care system—both the practitioners and the people deciding about reimbursement—that these are things we must do?

Murthy: There are a few areas that come to mind, and I’ve jotted them down. It is so important for us to do research with vulnerable populations, recognizing they often get left out. It’s essential that we conduct studies specifically for these populations so that we can better target interventions to them.

The second area is prevention programs. People want to prevent illnesses. I have not met anybody anywhere in the United States who has said, “I’d rather get diabetes first and treat it versus prevent it in the first place.” As silly as that might sound, it is the exact opposite of how we finance health interventions in our country. We put the lion’s share of our dollars in treatment. We do very little in prevention.

The third piece is the barriers faced by primary-care clinicians, who we want to be at the heart of providing a lot of these treatment services. I’ll tell you, just from my conversations with primary-care docs around the country, they worry about not having enough for their patients in the way of social work and social support services in their offices.Finally, it has become extraordinarily clear to me that social support is one of the critical elements of treatment for substance use disorders. That it is what helps keep people in recovery. I think about the fact that many people I met who struggle with opioid use disorders had family members who were wondering how they could be helpful. They weren’t sure. They said, “Should I just keep badgering my relative to go to treatment? Should I take a tough love approach? What should I do to be helpful?”

This actually is one of the most pressing issues: social support is most often going to come from family, from friends, and from other community members. So, being able to guide them in an evidence-based way about what measures, what forms actually can be helpful to people struggling with opioid use disorders could also be immensely helpful to a group that is looking to provide assistance and support, but often is struggling to figure out how best to do that.

Collins: Vivek, you were focused as Surgeon General in the Obama Administration on the importance of changing how America thinks about addiction—that it is not a moral failing but a chronic illness that has to be treated with compassion, urgency, skill, and medical intervention. Are we getting anywhere with making that case?

Murthy: Sometimes people shy away from addressing the stigma around addiction because it feels too hard to address. But it is one of the most important issues to address. If people are still feeling judged for their disorders, they are not going to feel comfortable coming forward and getting treatment. And others will hesitate to step up and provide support.

I will always remember the young couple I met in Oklahoma who had lost their son to an opioid overdose. They told me that previously in their life whenever they had a struggle—a job loss or other health issue in the family—neighbors would come over, they would drop off food, they would visit and sit with them in their living room and hold their hands to see if they were okay. When their son died after opioid use disorder, it was silent. Nobody came over. It’s a very common story of how people feel ashamed, they feel uncomfortable, they don’t know quite what to say. So they stay away, which is the worst thing possible during these times of great pain and distress.

I do think we have made progress in the last few years. There are more people stepping forward to tell their stories. There are more people and practitioners who are embracing the importance of talking to their patients about substance use disorders and getting involved in treating them. But the truth is, we still have many people in the country who feel ashamed of what they’re dealing with. We still have many family members who feel that this is a source of shame to have a loved one struggling with a substance use disorder.

To me, this is much bigger than substance use disorders. This is a broader cultural issue of how we think about strength and vulnerability. We have defined strength in modern society as the loudest voice in the room or the person with the most physical prowess, the person who’s aggressive in negotiations, and the person who’s famous.But I don’t think that’s what strength really is. Strength is so often displayed in moments of vulnerability when people have the courage to open up and be themselves. Strength is defined by the people who have the courage to display love, patience, and compassion, especially when it’s difficult. That’s what real strength is.

One of my hopes is that, as a society, we can ultimately redefine strength. As we think about our children and what we want them to be, we cannot aspire for them to be the loudest voice in the room. We can aspire for them to be the most-thoughtful, the most-welcoming, the most-inviting, the most-compassionate voice in the room.

If we truly want to be a society that’s grounded in love, compassion, and kindness, if we truly recognize those as the sources of strength and healing, we have to value those in our workplaces. They have to be reflected in our promotion systems. We have to value them in the classroom. Ultimately, we’ve got to build our lives around them.

That is a broader lesson that I took from all of the conversations I’ve had with people who struggle with opioid use disorders. What I took was, yes, we need medication and assisted treatment; yes, we need counseling services; yes, we need social services and wraparound services and recovery services. But the engine that will drive our healing is fundamentally the love and compassion that come from human relationships.

We all have the ability to heal because we all have the ability to be kind and to love one another. That’s the lesson that it took me more than two decades to learn in medicine. More important than any prescription that I could write is the compassion that I could extend to patients simply by listening, by showing up, by being present in their lives. We all have that ability, regardless of what degrees follow our name.

Collins: Vivek, this has been a wonderful conversation. We are fortunate to have you as our Surgeon General at this time, when we need lots of love and compassion.

Murthy: Thank you so much, Francis.

Links:

Opioids (National Institute on Drug Abuse/NIH)

Opioid Overdose Crisis (NIDA)

Vice Admiral Vivek H. Murthy (U.S. Department of Health and Human Services, Washington, D.C.)

Helping to End Addiction Long-term (HEAL) Initiative (NIH)

Video: Emotional Well Being and the Power of Connections to Fight the Opioid Epidemic (HEAL/NIH)

Read more →

How COVID-19 Can Lead to Diabetes

Along with the pneumonia, blood clots, and other serious health concerns caused by SARS-CoV-2, the COVID-19 virus, some studies have also identified another troubling connection. Some people can develop diabetes after an acute COVID-19 infection.

What’s going on? Two new NIH-supported studies, now available as pre-proofs in the journal Cell Metabolism [1,2], help to answer this important question, confirming that SARS-CoV-2 can target and impair the body’s insulin-producing cells.

Type 1 diabetes occurs when beta cells in the pancreas don’t secrete enough insulin to allow the body to metabolize food optimally after a meal. As a result of this insulin insufficiency, blood glucose levels go up, the hallmark of diabetes.

Earlier lab studies had suggested that SARS-CoV-2 can infect human beta cells [3]. They also showed that this dangerous virus can replicate in these insulin-producing beta cells, to make more copies of itself and spread to other cells [4].

The latest work builds on these earlier studies to discover more about the connection between COVID-19 and diabetes. The work involved two independent NIH-funded teams, one led by Peter Jackson, Stanford University School of Medicine, Palo Alto, CA, and the other by Shuibing Chen, Weill Cornell Medicine, New York. I’m actually among the co-authors on the study by the Chen team, as some of the studies were conducted in my lab at NIH’s National Human Genome Research Institute, Bethesda, MD.

Both studies confirmed infection of pancreatic beta cells in autopsy samples from people who died of COVID-19. Additional studies by the Jackson team suggest that the coronavirus may preferentially infect the insulin-producing beta cells.

This also makes biological sense. Beta cells and other cell types in the pancreas express the ACE2 receptor protein, the TMPRSS2 enzyme protein, and neuropilin 1 (NRP1), all of which SARS-CoV-2 depends upon to enter and infect human cells. Indeed, the Chen team saw signs of the coronavirus in both insulin-producing beta cells and several other pancreatic cell types in the studies of autopsied pancreatic tissue.

The new findings also show that the coronavirus infection changes the function of islets—the pancreatic tissue that contains beta cells. Both teams report evidence that infection with SARS-CoV-2 leads to reduced production and release of insulin from pancreatic islet tissue. The Jackson team also found that the infection leads directly to the death of some of those all-important beta cells. Encouragingly, they showed this could avoided by blocking NRP1.

In addition to the loss of beta cells, the infection also appears to change the fate of the surviving cells. Chen’s team performed single-cell analysis to get a careful look at changes in the gene activity within pancreatic cells following SARS-CoV-2 infection. These studies showed that beta cells go through a process of transdifferentiation, in which they appeared to get reprogrammed.

In this process, the cells begin producing less insulin and more glucagon, a hormone that encourages glycogen in the liver to be broken down into glucose. They also began producing higher levels of a digestive enzyme called trypsin 1. Importantly, they also showed that this transdifferentiation process could be reversed by a chemical (called trans-ISRIB) known to reduce an important cellular response to stress.

The consequences of this transdifferentiation of beta cells aren’t yet clear, but would be predicted to worsen insulin deficiency and raise blood glucose levels. More study is needed to understand how SARS-CoV-2 reaches the pancreas and what role the immune system might play in the resulting damage. Above all, this work provides yet another reminder of the importance of protecting yourself, your family members, and your community from COVID-19 by getting vaccinated if you haven’t already—and encouraging your loved ones to do the same.

References:

[1] SARS-CoV-2 infection induces beta cell transdifferentiation. Tang et al. Cell Metab 2021 May 19;S1550-4131(21)00232-1.

[2] SARS-CoV-2 infects human pancreatic beta cells and elicits beta cell impairment. Wu et al. Cell Metab. 2021 May 18;S1550-4131(21)00230-8.

[3] A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Yang L, Han Y, Nilsson-Payant BE, Evans T, Schwartz RE, Chen S, et al. Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7.

[4] SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Müller JA, Groß R, Conzelmann C, Münch J, Heller S, Kleger A, et al. Nat Metab. 2021 Feb;3(2):149-165.

Links:

COVID-19 Research (NIH)

Type 1 Diabetes (National Institute of Diabetes, Digestive and Kidney Disorders/NIH)

Jackson Lab (Stanford Medicine, Palo Alto, CA)

Shuibing Chen Laboratory (Weill Cornell Medicine, New York City)

NIH Support: National Institute of Diabetes and Digestive and Kidney Diseases; National Human Genome Research Institute; National Institute of General Medical Sciences; National Cancer Institute; National Institute of Allergy and Infectious Diseases; Eunice Kennedy Shriver National Institute of Child Health and Human Development

Read more →

Taking Down COVID-19

I recently spoke with World Wrestling Entertainment (WWE) superstar Drew McIntyre to take down COVID-19. I made the case to all WWE fans that the best way to get past the COVID-19 pandemic is for as many people as possible to roll up their sleeves and get vaccinated. I also told everyone listening about We Can Do This, four words to type into their browsers to access evidence-based answers to questions about the COVID-19 vaccines. We spoke virtually on May 13.

Read more →